On graphs with a local hereditary property
نویسندگان
چکیده
Let P be an induced hereditary property and L(P) denote the class of all graphs that satisfy the property P locally. The purpose of the present paper is to describe the minimal forbidden subgraphs of L(P) and the structure of local properties. Moreover, we prove that L(P) is irreducible for any hereditary property P. c © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
On the testability and repair of hereditary hypergraph properties
Recent works of Alon-Shapira [6] and Rödl-Schacht [30] have demonstrated that every hereditary property of undirected graphs or hypergraphs is testable with one-sided error; informally, this means that if a graph or hypergraph satisfies that property “locally” with sufficiently high probability, then it can be perturbed (or “repaired”) into a graph or hypergraph which satisfies that property “g...
متن کاملSome extremal problems of graphs with local constraints
Let P be a family of graphs. A graph G is said to satisfy a property P locally if G[N (v)]∈P for every v∈V (G). The class of graphs that satis6es the property P locally will be denoted by L(P) and we shall call such a class a local property. Let P be a hereditary property. A graph is said to be maximal with respect to a hereditary property P (shortly P-maximal) if it belongs to P and none of it...
متن کاملParacompactness on supra topological spaces
In this article, we present the concept of supra paracompact spaces and study its basic properties. We elucidate its relationship with supra compact spaces and prove that the property of being a supra paracompact space is weakly hereditary and topological properties. Also, we provide some examples to show some results concerning paracompactness on topology are invalid on supra topology. Finally...
متن کاملMaximal graphs with respect to hereditary properties
A property of graphs is a non-empty set of graphs. A property P is called hereditary if every subgraph of any graph with property P also has property P. Let P1, . . . ,Pn be properties of graphs. We say that a graph G has property P1◦ · · · ◦Pn if the vertex set of G can be partitioned into n sets V1, . . . , Vn such that the subgraph of G induced by Vi has property Pi; i = 1, . . . , n. A here...
متن کاملFractional Q-edge-coloring of Graphs
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let Q be an additive hereditary property of graphs. A Q-edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property Q. In this paper we present some results on fractional Q-edge-colorings. We determine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2001